Efficient spatial navigation is a hallmark of the mammalian brain, inspiring the development of neuromorphic systems that mimic biological principles. Despite progress, implementing key operations like back-tracing and handling ambiguity in bio-inspired spiking neural networks remains an open challenge. This work proposes a mechanism for activity back-tracing in arbitrary, uni-directional spiking neuron graphs. We extend the existing replay mechanism of the spiking hierarchical temporal memory (S-HTM) by our spike timing-dependent threshold adaptation (STDTA), which enables us to perform path planning in networks of spiking neurons. We further present an ambiguity dependent threshold adaptation (ADTA) for identifying places in an environment with less ambiguity, enhancing the localization estimate of an agent. Combined, these methods enable efficient identification of the shortest path to an unambiguous target. Our experiments show that a network trained on sequences reliably computes shortest paths with fewer replays than the steps required to reach the target. We further show that we can identify places with reduced ambiguity in multiple, similar environments. These contributions advance the practical application of biologically inspired sequential learning algorithms like the S-HTM towards neuromorphic localization and navigation.
翻译:暂无翻译