Lung cancer is the cancer leading cause of cancer-related death worldwide. Lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) are the most common histologic subtypes of NSCLC. Histology is an essential tool for lung cancer diagnosis. Pathologists make classifications according to the dominant subtypes. Although morphology remains the standard for diagnosis, significant tool needs to be developed to elucidate the diagnosis. In our study, we utilize the pre-trained Vision Transformer (ViT) model to classify multiple label lung cancer on histologic slices (from dataset LC25000), in both Zero-Shot and Few-Shot manners. Then we compare the performance of Zero-Shot and Few-Shot ViT on accuracy, precision, recall, sensitivity and specificity. Our study show that the pre-trained ViT model has a good performance in Zero-Shot setting, a competitive accuracy ($99.87\%$) in Few-Shot setting ({epoch = 1}) and an optimal result ($100.00\%$) in Few-Shot seeting ({epoch = 5}).
翻译:肺癌是全世界与癌症有关的死亡的主因。肺癌肾癌(LUAD)和肺脏细胞癌(LUSC)是NSCLLC最常见的历史学子类型。病理学是肺癌诊断的一个基本工具。病理学家根据主要子类型进行分类。虽然病理学仍然是诊断的标准,但需要开发重要的工具来解释诊断。在我们的研究中,我们利用预先培训的视力变异器(VIT)模型(LC2500),用Zero-Shot和少点位方式,对骨骼切片(LC2500)上的多重标签肺癌进行分类。然后我们比较零热和少点Vit的性能,以精度、精确度、回想、敏感度和特殊性为主。我们的研究显示,经过培训的VIT模型在Zero-Shot 设置方面表现良好,有竞争性的准确性(99.87美元),在微粒位定位({epoch=1美元)和最佳结果(10美元=5美元)中最佳结果。