Gliomas are one of the most frequent brain tumors and are classified into high grade and low grade gliomas. The segmentation of various regions such as tumor core, enhancing tumor etc. plays an important role in determining severity and prognosis. Here, we have developed a multi-threshold model based on attention U-Net for identification of various regions of the tumor in magnetic resonance imaging (MRI). We propose a multi-path segmentation and built three separate models for the different regions of interest. The proposed model achieved mean Dice Coefficient of 0.59, 0.72, and 0.61 for enhancing tumor, whole tumor and tumor core respectively on the training dataset. The same model gave mean Dice Coefficient of 0.57, 0.73, and 0.61 on the validation dataset and 0.59, 0.72, and 0.57 on the test dataset.
翻译:Gliomas是最常见的脑肿瘤之一,被分类为高等级和低等级的显微瘤。各个区域,如肿瘤核心、增加肿瘤等的分解在确定严重性和预测性方面起着重要作用。在这里,我们开发了一个多阈值模型,其基础是注意U-Net,用以识别磁共振成像中的肿瘤各个区域。我们提出了一个多路分解方案,并为不同感兴趣的区域建立了三个不同的模型。拟议模型达到平均骰子系数0.59、0.72和0.61,分别用于加强培训数据集中的肿瘤、整个肿瘤和肿瘤核心。同一模型为验证数据集提供了0.57、0.73和0.61的均值,为0.59、0.72和0.57的测试数据集提供了0.57的均值。