Message-oriented and robotics middleware play an important role in facilitating robot control, abstracting complex functionality and unifying communication patterns across networks of sensors and devices. However, the use of multiple middleware frameworks presents a challenge in integrating different robots within a single system. To address this challenge, we present Wrapyfi, a Python wrapper supporting multiple message-oriented and robotics middleware, including ZeroMQ, YARP, ROS, and ROS 2. Wrapyfi also provides plugins for exchanging deep learning framework data, without additional encoding or preprocessing steps. Using Wrapyfi eases the development of scripts that run on multiple machines, thereby enabling cross-platform communication and workload distribution. We evaluated Wrapyfi in practical settings by conducting two user studies, using multiple sensors transmitting readings to deep learning models, and using robots such as the iCub and Pepper via different middleware. The results demonstrated Wrapyfi's usability in practice allowing for multi-middleware exchanges, and controlled process distribution in a real-world setting. More importantly, we showcase Wrapify's most prominent features by bridging interactions between sensors, deep learning models, and robotic platforms.


翻译:信息导向器和机器人中继器在推动机器人控制、提取复杂功能和统一传感器和装置网络之间通信模式方面发挥了重要作用。 但是,使用多个中继器框架在将不同机器人整合到一个单一系统方面提出了挑战。为了应对这一挑战,我们介绍了支持多信息导向器和机器人中继器的Python包装器Paldyfi, 包括ZeroMQ、YARP、ROS和ROS 2. 帕内菲还提供插件,用于交换深学习框架数据,而无需额外的编码或预处理步骤。使用包内菲可以方便多台机器运行的脚本的开发,从而有利于跨平台通信和工作量分配。我们通过开展两个用户研究,使用多个传感器将阅读传递到深层学习模型,以及使用iCub和焦贝等机器人,在实用环境中评估了包内菲。结果显示包里菲在实践上的可用性,允许多中继器交换,以及在现实环境中有控制的流程分布。更重要的是,我们通过连接传感器、深层学习模型和机器人之间的互动,展示了最突出的特征。

0
下载
关闭预览

相关内容

International Middleware会议是讨论中间件设计、构造和使用方面的重要创新和最新进展的论坛。中间件是位于应用程序和底层平台(操作系统;数据库;硬件)之间的分布式系统软件,和/或将分布式应用程序、数据库或设备连接在一起。它的主要作用是协调和实现不同层或组件之间的通信,同时将分布的大部分复杂性隔离为一个单一的、经过充分测试和理解的系统抽象。 官网链接:http://www.middleware-conference.org/
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
38+阅读 · 2020年9月6日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
35+阅读 · 2021年8月2日
Arxiv
10+阅读 · 2021年3月30日
Arxiv
19+阅读 · 2021年2月4日
VIP会员
相关VIP内容
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
38+阅读 · 2020年9月6日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员