Inspired by the human visual system's mechanisms for contrast enhancement and color-opponency, we explore biologically motivated input preprocessing for robust semantic segmentation. By applying Difference-of-Gaussians (DoG) filtering to RGB, grayscale, and opponent-color channels, we enhance local contrast without modifying model architecture or training. Evaluations on Cityscapes, ACDC, and Dark Zurich show that such preprocessing maintains in-distribution performance while improving robustness to adverse conditions like night, fog, and snow. As this processing is model-agnostic and lightweight, it holds potential for integration into imaging pipelines, enabling imaging systems to deliver task-ready, robust inputs for downstream vision models in safety-critical environments.
翻译:暂无翻译