Half graphs and their variants, such as ladders, semi-ladders and co-matchings, are combinatorial objects that encode total orders in graphs. Works by Adler and Adler (Eur. J. Comb.; 2014) and Fabia\'nski et al. (STACS; 2019) prove that in the powers of sparse graphs, one cannot find arbitrarily large objects of this kind. However, these proofs either are non-constructive, or provide only loose upper bounds on the orders of half graphs and semi-ladders. In this work we provide nearly tight asymptotic lower and upper bounds on the maximum order of half graphs, parameterized on the distance, in the following classes of sparse graphs: planar graphs, graphs with bounded maximum degree, graphs with bounded pathwidth or treewidth, and graphs excluding a fixed clique as a minor. The most significant part of our work is the upper bound for planar graphs. Here, we employ techniques of structural graph theory to analyze semi-ladders in planar graphs through the notion of cages, which expose a topological structure in semi-ladders. As an essential building block of this proof, we also state and prove a new structural result, yielding a fully polynomial bound on the neighborhood complexity in the class of planar graphs.


翻译:半平面图及其变体,如梯子、半梯子和共同匹配,是组合对象,在图形中编码总顺序。Adler和Adler的作品(Eur.J.Comb.;2014年)和Fabia\'nski等人的作品(STACS;2019年)证明,在稀薄图的功率中,无法找到这种类型的任意大对象。然而,这些证明要么是非构件,要么只提供半图和半梯子的顺序上线松散。在这项工作中,我们提供了近乎紧紧的低端和上端线的半端图单线(Eur.J.Comb.;2014年)和Adler的作品。Adler和Adler(Eur.J.J.J.J.Comb.;2014年)和Fabialdr.(ST.)的作品:平面图的平面图、带线条纹的图和图中不包括固定的细面图。我们工作的最重要的部分是平面图的上框。在这里,我们使用结构图中结构图的理论理论理论理论 分析半拉图的底部结构结构结构图中,也是我们所需要的图的底部。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
12+阅读 · 2017年9月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
Pointer Graph Networks
Arxiv
7+阅读 · 2020年6月11日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
23+阅读 · 2018年10月1日
Efficient and Effective $L_0$ Feature Selection
Arxiv
5+阅读 · 2018年8月7日
VIP会员
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
12+阅读 · 2017年9月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员