Video capsule endoscopy is a hot topic in computer vision and medicine. Deep learning can have a positive impact on the future of video capsule endoscopy technology. It can improve the anomaly detection rate, reduce physicians' time for screening, and aid in real-world clinical analysis. CADx classification system for video capsule endoscopy has shown a great promise for further improvement. For example, detection of cancerous polyp and bleeding can lead to swift medical response and improve the survival rate of the patients. To this end, an automated CADx system must have high throughput and decent accuracy. In this paper, we propose FocalConvNet, a focal modulation network integrated with lightweight convolutional layers for the classification of small bowel anatomical landmarks and luminal findings. FocalConvNet leverages focal modulation to attain global context and allows global-local spatial interactions throughout the forward pass. Moreover, the convolutional block with its intrinsic inductive/learning bias and capacity to extract hierarchical features allows our FocalConvNet to achieve favourable results with high throughput. We compare our FocalConvNet with other SOTA on Kvasir-Capsule, a large-scale VCE dataset with 44,228 frames with 13 classes of different anomalies. Our proposed method achieves the weighted F1-score, recall and MCC} of 0.6734, 0.6373 and 0.2974, respectively outperforming other SOTA methodologies. Furthermore, we report the highest throughput of 148.02 images/second rate to establish the potential of FocalConvNet in a real-time clinical environment. The code of the proposed FocalConvNet is available at https://github.com/NoviceMAn-prog/FocalConvNet.
翻译:视频胶囊内分镜是计算机视觉和医学的一个热门话题。 深层学习可以对视频胶囊内分镜技术的未来产生积极影响。 它可以提高异常检测率,减少医生的检查时间,帮助进行现实世界临床分析。 CADx 视频胶囊内分解系统表现出了很大的进一步改进前景。 例如, 检测癌症聚氨酯和出血会导致迅速的医疗反应,提高病人的存活率。 为此, 自动 CADx系统必须具有高的吞吐量和体面的准确性。 在本文中, 我们提议ConvNet中心是一个与轻量的中央网络内分层结合的焦点调制网络,用于小肠内分泌标志的分类和对真实世界临床分析的帮助。 ConvexNet 利用CADAx分类系统实现全球环境的调控,并允许全球局部空间空间互动。 此外, 具有内在感化/学习偏差偏差偏差和感官特征的CADUNet系统必须具备高通量和高通量的结果。 我们提议在KVasiralNet上将CONNet和其他SOTA 4 的SODER 和SBlevlevlation 的Suplation 和13-CRislaterallateral 。