The standard model and the bandit model are two generalizations of the mistake-bound model to online multiclass classification. In both models the learner guesses a classification in each round, but in the standard model the learner recieves the correct classification after each guess, while in the bandit model the learner is only told whether or not their guess is correct in each round. For any set $F$ of multiclass classifiers, define $opt_{std}(F)$ and $opt_{bandit}(F)$ to be the optimal worst-case number of prediction mistakes in the standard and bandit models respectively. Long (Theoretical Computer Science, 2020) claimed that for all $M > 2$ and infinitely many $k$, there exists a set $F$ of functions from a set $X$ to a set $Y$ of size $k$ such that $opt_{std}(F) = M$ and $opt_{bandit}(F) \ge (1 - o(1))(|Y|\ln{|Y|})opt_{std}(F)$. The proof of this result depended on the following lemma, which is false e.g. for all prime $p \ge 5$, $s = \mathbf{1}$ (the all $1$ vector), $t = \mathbf{2}$ (the all $2$ vector), and all $z$. Lemma: Fix $n \ge 2$ and prime $p$, and let $u$ be chosen uniformly at random from $\left\{0, \dots, p-1\right\}^n$. For any $s, t \in \left\{1, \dots, p-1\right\}^n$ with $s \neq t$ and for any $z \in \left\{0, \dots, p-1\right\}$, we have $\Pr(t \cdot u = z \mod p \text{ } | \text{ } s \cdot u = z \mod p) = \frac{1}{p}$. We show that this lemma is false precisely when $s$ and $t$ are multiples of each other mod $p$. Then using a new lemma, we fix Long's proof.


翻译:标准模型和土匪模型是 {F} 和 $opt} bandit} (F) 的两套错误模型。 在两个模型中, 学习者对每一轮的分类进行猜测, 但在标准模型中, 学习者对每次猜测后正确分类, 而在土匪模型中, 学习者只被告知每轮的猜测是否正确。 对于任何一套多级分类器的F美元, 定义$opt} (F) 美元和$opt} 美元(F) 是标准模型和土匪模型中最坏的预测错误。 长( 理论计算机科学, 2020) 声称所有美元 > 2美元, 无限多美元, 有一套美元 美元到 美元 美元。 因此, 美元=美元=美元=美元=美元, 美元=美元=美元= 美元= 美元=美元=美元。 美元= 全部的(F) = 美元= 美元= 美元=美元=美元, 美元= 美元= 美元= 美元= 美元= 美元= 美元。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
169+阅读 · 2019年10月11日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
计算机视觉近一年进展综述
机器学习研究会
8+阅读 · 2017年11月25日
资源|斯坦福课程:深度学习理论!
全球人工智能
17+阅读 · 2017年11月9日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年3月24日
Arxiv
7+阅读 · 2020年12月10日
Deep Learning for Energy Markets
Arxiv
9+阅读 · 2019年4月10日
Arxiv
4+阅读 · 2018年12月3日
VIP会员
相关VIP内容
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
计算机视觉近一年进展综述
机器学习研究会
8+阅读 · 2017年11月25日
资源|斯坦福课程:深度学习理论!
全球人工智能
17+阅读 · 2017年11月9日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Arxiv
0+阅读 · 2021年3月24日
Arxiv
7+阅读 · 2020年12月10日
Deep Learning for Energy Markets
Arxiv
9+阅读 · 2019年4月10日
Arxiv
4+阅读 · 2018年12月3日
Top
微信扫码咨询专知VIP会员