Neural networks (NN) play a central role in modern Artificial intelligence (AI) technology and has been successfully used in areas such as natural language processing and image recognition. While majority of NN applications focus on prediction and classification, there are increasing interests in studying statistical inference of neural networks. The study of NN statistical inference can enhance our understanding of NN statistical proprieties. Moreover, it can facilitate the NN-based hypothesis testing that can be applied to hypothesis-driven clinical and biomedical research. In this paper, we propose a sieve quasi-likelihood ratio test based on NN with one hidden layer for testing complex associations. The test statistic has asymptotic chi-squared distribution, and therefore it is computationally efficient and easy for implementation in real data analysis. The validity of the asymptotic distribution is investigated via simulations. Finally, we demonstrate the use of the proposed test by performing a genetic association analysis of the sequencing data from Alzheimer's Disease Neuroimaging Initiative (ADNI).
翻译:神经网络(NN)在现代人工智能(AI)技术中发挥着中心作用,并在自然语言处理和图像识别等领域得到成功使用。虽然NN应用大多侧重于预测和分类,但对研究神经网络的统计推论的兴趣日益浓厚。对NN统计推论的研究可以增进我们对NN统计专有性的了解。此外,它还可以促进NN的假设测试,用于假设驱动的临床和生物医学研究。在本文中,我们提议在NNN的基础上,进行一个隐蔽层的近似比率测试,用于测试复杂的关联。测试统计数据的分布是无时效的,因此在计算上是高效的,便于在实际数据分析中实施。对无防护分布的有效性通过模拟来调查。最后,我们通过对来自阿尔茨海默氏病神经化倡议(ADNI)的测序数据进行基因联系分析,来证明对拟议的测试的使用。