Recent work in unsupervised learning has focused on efficient inference and learning in latent variables models. Training these models by maximizing the evidence (marginal likelihood) is typically intractable. Thus, a common approximation is to maximize the Evidence Lower BOund (ELBO) instead. Variational autoencoders (VAE) are a powerful and widely-used class of generative models that optimize the ELBO efficiently for large datasets. However, the VAE's default Gaussian choice for the prior imposes a strong constraint on its ability to represent the true posterior, thereby degrading overall performance. A Gaussian mixture model (GMM) would be a richer prior, but cannot be handled efficiently within the VAE framework because of the intractability of the Kullback-Leibler divergence for GMMs. We deviate from the common VAE framework in favor of one with an analytical solution for Gaussian mixture prior. To perform efficient inference for GMM priors, we introduce a new constrained objective based on the Cauchy-Schwarz divergence, which can be computed analytically for GMMs. This new objective allows us to incorporate richer, multi-modal priors into the autoencoding framework. We provide empirical studies on a range of datasets and show that our objective improves upon variational auto-encoding models in density estimation, unsupervised clustering, semi-supervised learning, and face analysis.


翻译:在不受监督的近期学习中,最近的工作侧重于对潜在变量模型的高效推断和学习。通过最大限度地增加证据(边际可能性)来培训这些模型通常是难以解决的。因此,一个共同的近似点是最大限度地增加证据下库(ELBO ) 。 动态自动读数器(VAE)是一个强大和广泛使用的基因模型类别,为大型数据集高效优化ELBO。然而,VAE对前一变量的默认Gausian选择对其代表真实的后背模型的能力施加了强烈的制约,从而降低了总体性能。高斯混合模型(GMMM)将更丰富,但无法在VAE框架内高效处理,因为Kullback-Lebeter差异对于GMMM(GMMM)来说是不可忽视的。我们偏离了通用VAE框架,而前者则倾向于对高斯混合混合物有一个分析解决方案。为了高效地推断GMOM(GM)之前的面面模型,我们引入了一个新的限制目标。我们可以在CASS-S-Schwarz 差异模型上进行新的分析性目标。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
最新《可解释机器学习:原理与实践》综述论文,33页pdf
专知会员服务
156+阅读 · 2020年10月10日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
270+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Hyperspherical Variational Auto-Encoders
Arxiv
4+阅读 · 2018年9月26日
Arxiv
6+阅读 · 2018年4月4日
Arxiv
6+阅读 · 2018年3月12日
Arxiv
9+阅读 · 2018年1月4日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员