Most work in the area of learning theory has focused on designing effective Probably Approximately Correct (PAC) learners. Recently, other models of learning such as transductive error have seen more scrutiny. We move toward showing that these problems are equivalent by reducing agnostic learning with a PAC guarantee to agnostic learning with a transductive guarantee by adding a small number of samples to the dataset. We first rederive the result of Aden-Ali et al. arXiv:2304.09167 reducing PAC learning to transductive learning in the realizable setting using simpler techniques and at more generality as background for our main positive result. Our agnostic transductive to PAC conversion technique extends the aforementioned argument to the agnostic case, showing that an agnostic transductive learner can be efficiently converted to an agnostic PAC learner. Finally, we characterize the performance of the agnostic one inclusion graph algorithm of Asilis et al. arXiv:2309.13692 for binary classification, and show that plugging it into our reduction leads to an agnostic PAC learner that is essentially optimal. Our results imply that transductive and PAC learning are essentially equivalent for supervised learning with pseudometric losses in the realizable setting, and for binary classification in the agnostic setting. We conjecture this is true more generally for the agnostic setting.


翻译:暂无翻译

0
下载
关闭预览

相关内容

PAC学习理论不关心假设选择算法,他关心的是能否从假设空间H中学习一个好的假设h。此理论不关心怎样在假设空间中寻找好的假设,只关心能不能找得到。现在我们在来看一下什么叫“好假设”?只要满足两个条件(PAC辨识条件)即可
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
12+阅读 · 2021年3月24日
Principal Neighbourhood Aggregation for Graph Nets
Arxiv
17+阅读 · 2020年6月7日
How to Fine-Tune BERT for Text Classification?
Arxiv
13+阅读 · 2019年5月14日
Arxiv
11+阅读 · 2018年3月23日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
12+阅读 · 2021年3月24日
Principal Neighbourhood Aggregation for Graph Nets
Arxiv
17+阅读 · 2020年6月7日
How to Fine-Tune BERT for Text Classification?
Arxiv
13+阅读 · 2019年5月14日
Arxiv
11+阅读 · 2018年3月23日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员