The capacity to predict human spatial preferences within built environments is instrumental for developing Cyber-Physical-Social Infrastructure Systems (CPSIS). A significant challenge in this domain is the generalizability of preference models, particularly their efficacy in predicting preferences within environmental configurations not encountered during training. While deep learning models have shown promise in learning complex spatial and contextual dependencies, it remains unclear which neural network architectures are most effective at generalizing to unseen layouts. To address this, we conduct a comparative study of Graph Neural Networks, Convolutional Neural Networks, and standard feedforward Neural Networks using synthetic data generated from a simplified and synthetic pocket park environment. Beginning with this illustrative case study, allows for controlled analysis of each model's ability to transfer learned preference patterns to unseen spatial scenarios. The models are evaluated based on their capacity to predict preferences influenced by heterogeneous physical, environmental, and social features. Generalizability score is calculated using the area under the precision-recall curve for the seen and unseen layouts. This generalizability score is appropriate for imbalanced data, providing insights into the suitability of each neural network architecture for preference-aware human behavior modeling in unseen built environments.
翻译:暂无翻译