Effective communication of UX considerations to stakeholders (e.g., designers and developers) is a critical challenge for UX practitioners. To explore this problem, we interviewed four UX practitioners about their communication challenges and strategies. Our study identifies that providing an example user flow-a screen sequence representing a semantic task-as evidence reinforces communication, yet finding relevant examples remains challenging. To address this, we propose a method to systematically retrieve user flows using semantic embedding. Specifically, we design a model that learns to associate screens' visual features with user flow descriptions through contrastive learning. A survey confirms that our approach retrieves user flows better aligned with human perceptions of relevance. We analyze the results and discuss implications for the computational representation of user flows.
翻译:暂无翻译