This paper introduces the proposed automatic minuting system of the Hitachi team for the First Shared Task on Automatic Minuting (AutoMin-2021). We utilize a reference-free approach (i.e., without using training minutes) for automatic minuting (Task A), which first splits a transcript into blocks on the basis of topics and subsequently summarizes those blocks with a pre-trained BART model fine-tuned on a summarization corpus of chat dialogue. In addition, we apply a technique of argument mining to the generated minutes, reorganizing them in a well-structured and coherent way. We utilize multiple relevance scores to determine whether or not a minute is derived from the same meeting when either a transcript or another minute is given (Task B and C). On top of those scores, we train a conventional machine learning model to bind them and to make final decisions. Consequently, our approach for Task A achieve the best adequacy score among all submissions and close performance to the best system in terms of grammatical correctness and fluency. For Task B and C, the proposed model successfully outperformed a majority vote baseline.
翻译:本文介绍了Hitachi小组为自动减速第一共同任务第一次共享任务提出的自动潜流系统(AutoMin-2021),我们使用不参考方法(即不使用培训分钟)进行自动潜流(Task A),首先根据专题将笔录分成块块,然后用事先经过培训的BART模型,对聊天对话的汇总内容进行微调,对这些块进行总结;此外,我们对生成的分钟运用了一种辨论挖掘技术,以结构合理和连贯的方式对分钟进行重组;我们利用多重相关评分来确定在提供笔录或另一分钟(Task B和C)时同一次会议是否产生一分钟(Task B和C)。除了这些评分之外,我们还培训了常规机器学习模式,以捆绑起来,作出最后决定;因此,我们的任务A方法在所有提交材料中达到最适当的分数,并在地谱正确和流利方面接近最佳系统。关于任务B和C的拟议模型成功地超过了多数投票基线。