We study a natural combinatorial pricing problem for sequentially arriving buyers with equal budgets. Each buyer is interested in exactly one pair of items and purchases this pair if and only if, upon arrival, both items are still available and the sum of the item prices does not exceed the budget. The goal of the seller is to set prices to the items such that the number of transactions is maximized when buyers arrive in adversarial order. Formally, we are given an undirected graph where vertices represent items and edges represent buyers. Once prices are set to the vertices, edges with a total price exceeding the buyers' budgets are evicted. Any arrival order of the buyers leads to a set of transactions that forms a maximal matching in this subgraph, and an adversarial arrival order results in a minimum maximal matching. In order to measure the performance of a pricing strategy, we compare the size of such a matching to the size of a maximum matching in the original graph. It was shown by Correa et al. [IPCO 2022] that the best ratio any pricing strategy can guarantee lies within $[1/2, 2/3]$. Our contribution to the problem is two-fold: First, we provide several characterizations of subgraphs that may result from pricing schemes. Second, building upon these, we show an improved upper bound of $3/5$ and a lower bound of $1/2 + 2/n$, where $n$ is the number of items.


翻译:我们研究的是按顺序按同等预算抵达的买方的自然组合定价问题。 每个买方都对一对精密的一对物品感兴趣,只有在到达时,两件物品都仍然可用,物品价格总额不超过预算时,才购买这对一对物品。 卖方的目标是为物品确定价格,以便当买主以对抗顺序到达时交易的数量最大化。 形式上, 我们得到一张无方向的图表, 顶点代表物品和边缘代表买主。 一旦价格固定在顶点, 任何价格总额超过买主预算的边緣都会被逐出。 买主的任何到货单导致一系列交易, 构成本子图中最大匹配, 而敌对抵达订单则导致最低最大匹配。 为了测量价格战略的绩效, 我们比较了这种匹配的规模与原始图表中最大匹配的大小。 Correa 和 Al. [IPCO 20222] 显示, 任何定价战略的最佳比率都可以保证在 $ $( $1/2/3美元) 之内。 我们的第二笔交易的贡献是一组, 3/2 的上限的结果是:我们提供了若干次调整的金额。

0
下载
关闭预览

相关内容

【2023新书】使用Python进行统计和数据可视化,554页pdf
专知会员服务
125+阅读 · 2023年1月29日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
15+阅读 · 2021年7月14日
Arxiv
17+阅读 · 2021年2月15日
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
A Survey on Edge Intelligence
Arxiv
49+阅读 · 2020年3月26日
Arxiv
12+阅读 · 2019年3月14日
Arxiv
13+阅读 · 2018年4月6日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关论文
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员