Graph structured data are abundant in the real world. Among different graph types, directed acyclic graphs (DAGs) are of particular interest to machine learning researchers, as many machine learning models are realized as computations on DAGs, including neural networks and Bayesian networks. In this paper, we study deep generative models for DAGs, and propose a novel DAG variational autoencoder (D-VAE). To encode DAGs into the latent space, we leverage graph neural networks. We propose an asynchronous message passing scheme that allows encoding the computations on DAGs, rather than using existing simultaneous message passing schemes to encode local graph structures. We demonstrate the effectiveness of our proposed D-VAE through two tasks: neural architecture search and Bayesian network structure learning. Experiments show that our model not only generates novel and valid DAGs, but also produces a smooth latent space that facilitates searching for DAGs with better performance through Bayesian optimization.
翻译:图表结构数据在现实世界中是丰富的。 在不同的图表类型中,定向环形图(DAGs)对机器学习研究人员特别感兴趣,因为许多机器学习模型是在DAGs的计算中实现的,包括神经网络和Bayesian网络。在本文中,我们研究了DAGs深层基因化模型,并提出了一个新的DAG变异自动编码器(D-VAE)。为了将DAGs编码到潜伏空间,我们利用图形神经网络。我们提出了一个非同步信息传递计划,允许将计算编码在DAGs上,而不是使用现有的同时传递信息计划编码本地图形结构。我们通过两项任务展示了我们提议的D-VAE的有效性:神经结构搜索和Bayesian网络结构学习。实验显示,我们的模型不仅生成了新颖和有效的DAGs,而且还产生了一种光滑的潜伏空间,通过Bayesian优化来更好地搜索DAGs。