The rapid growth of mobile banking (m-banking), especially after the COVID-19 pandemic, has reshaped the financial sector. This study analyzes consumer reviews of m-banking apps from five major Canadian banks, collected from Google Play and iOS App stores. Sentiment analysis and topic modeling classify reviews as positive, neutral, or negative, highlighting user preferences and areas for improvement. Data pre-processing was performed with NLTK, a Python language processing tool, and topic modeling used Latent Dirichlet Allocation (LDA). Sentiment analysis compared methods, with Long Short-Term Memory (LSTM) achieving 82\% accuracy for iOS reviews and Multinomial Naive Bayes 77\% for Google Play. Positive reviews praised usability, reliability, and features, while negative reviews identified login issues, glitches, and dissatisfaction with updates.This is the first study to analyze both iOS and Google Play m-banking app reviews, offering insights into app strengths and weaknesses. Findings underscore the importance of user-friendly designs, stable updates, and better customer service. Advanced text analytics provide actionable recommendations for improving user satisfaction and experience.
翻译:暂无翻译