The performance of object detection, to a great extent, depends on the availability of large annotated datasets. To alleviate the annotation cost, the research community has explored a number of ways to exploit unlabeled or weakly labeled data. However, such efforts have met with limited success so far. In this work, we revisit the problem with a pragmatic standpoint, trying to explore a new balance between detection performance and annotation cost by jointly exploiting fully and weakly annotated data. Specifically, we propose a weakly- and semi-supervised object detection framework (WSSOD), which involves a two-stage learning procedure. An agent detector is first trained on a joint dataset and then used to predict pseudo bounding boxes on weakly-annotated images. The underlying assumptions in the current as well as common semi-supervised pipelines are also carefully examined under a unified EM formulation. On top of this framework, weakly-supervised loss (WSL), label attention and random pseudo-label sampling (RPS) strategies are introduced to relax these assumptions, bringing additional improvement on the efficacy of the detection pipeline. The proposed framework demonstrates remarkable performance on PASCAL-VOC and MSCOCO benchmark, achieving a high performance comparable to those obtained in fully-supervised settings, with only one third of the annotations.


翻译:在这项工作中,我们以务实的观点重新审视了这一问题,试图通过充分和微弱的附加说明的数据来探索探测性能与说明性成本之间的新平衡。具体地说,我们提议建立一个薄弱和半监督的物体探测框架(WGRE),这涉及一个两阶段学习程序。首先,对一个代理探测器进行了联合数据集培训,然后用来预测标记性弱的图象上的假装盒。目前和共同的半监督管道的基本假设也在统一的EM的编制之下得到仔细审查。除了这一框架之外,还引入了薄弱的超强损失(WSL)、标签关注和随机假冒标签抽样(RPS)战略,以放松这些假设,从而进一步提高探测性管的效能。拟议的框架仅展示了在标准性能高的PASCO标准下取得的高水平业绩,仅展示了高水平的MSCO标准。

1
下载
关闭预览

相关内容

最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
67+阅读 · 2020年10月24日
【ICML2020】小样本目标检测
专知会员服务
90+阅读 · 2020年6月2日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
弱监督语义分割最新方法资源列表
专知
9+阅读 · 2019年2月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
Augmentation for small object detection
Arxiv
11+阅读 · 2019年2月19日
Arxiv
4+阅读 · 2018年10月5日
Arxiv
8+阅读 · 2018年4月12日
VIP会员
相关VIP内容
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
67+阅读 · 2020年10月24日
【ICML2020】小样本目标检测
专知会员服务
90+阅读 · 2020年6月2日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
弱监督语义分割最新方法资源列表
专知
9+阅读 · 2019年2月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
Top
微信扫码咨询专知VIP会员