Inductive transfer learning has had a big impact on computer vision and NLP domains but has not been used in the area of recommender systems. Even though there has been a large body of research on generating recommendations based on modeling user-item interaction sequences, few of them attempt to represent and transfer these models for serving downstream tasks where only limited data exists. In this paper, we delve on the task of effectively learning a single user representation that can be applied to a diversity of tasks, from cross-domain recommendations to user profile predictions. Fine-tuning a large pre-trained network and adapting it to downstream tasks is an effective way to solve such tasks. However, fine-tuning is parameter inefficient considering that an entire model needs to be re-trained for every new task. To overcome this issue, we develop a parameter efficient transfer learning architecture, termed as PeterRec, which can be configured on-the-fly to various downstream tasks. Specifically, PeterRec allows the pre-trained parameters to remain unaltered during fine-tuning by injecting a series of re-learned neural networks, which are small but as expressive as learning the entire network. We perform extensive experimental ablation to show the effectiveness of the learned user representation in five downstream tasks. Moreover, we show that PeterRec performs efficient transfer learning in multiple domains, where it achieves comparable or sometimes better performance relative to fine-tuning the entire model parameters. Codes and datasets are available at https://github.com/fajieyuan/sigir2020_peterrec.


翻译:感官传输学习对计算机视野和NLP领域产生了重大影响,但在推荐人系统领域尚未使用。尽管在根据模拟用户-项目互动序列生成建议方面进行了大量研究,但很少有人试图在只有有限数据的情况下为下游任务代表并转让这些模型。在本文件中,我们探讨了有效学习单一用户代表的任务,该代表可应用于从跨领域建议到用户配置预测等多种任务。精细调整大型的预先培训的参数并将其适应下游任务是解决此类任务的有效方法。然而,微调是低效的参数,因为整个模型需要为每一项新任务重新培训。为了克服这一问题,我们开发了一个称为PeterRec 的参数高效转移学习结构,这个结构可以直接配置到各种下游任务。具体地说,PeterRec允许经过预先培训的参数在微调期间保持未变的完整参数,通过注入一系列再分析的神经网络,这些网络虽然小,但表现得更好,但表现为学习整个网络的相对性能。我们进行广泛的实验性能转移数据,我们学习了多层次任务。

1
下载
关闭预览

相关内容

元学习与图神经网络逻辑推导,55页ppt
专知会员服务
127+阅读 · 2020年4月25日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
98+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
19+阅读 · 2019年11月23日
Arxiv
3+阅读 · 2018年12月21日
Arxiv
22+阅读 · 2018年8月3日
Arxiv
13+阅读 · 2018年4月18日
VIP会员
相关VIP内容
元学习与图神经网络逻辑推导,55页ppt
专知会员服务
127+阅读 · 2020年4月25日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
98+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员