We apply the theory of learning to physically renormalizable systems in an attempt to develop a theory of biological evolution, including the origin of life, as multilevel learning. We formulate seven fundamental principles of evolution that appear to be necessary and sufficient to render a universe observable and show that they entail the major features of biological evolution, including replication and natural selection. These principles also follow naturally from the theory of learning. We formulate the theory of evolution using the mathematical framework of neural networks, which provides for detailed analysis of evolutionary phenomena. To demonstrate the potential of the proposed theoretical framework, we derive a generalized version of the Central Dogma of molecular biology by analyzing the flow of information during learning (back-propagation) and predicting (forward-propagation) the environment by evolving organisms. The more complex evolutionary phenomena, such as major transitions in evolution, in particular, the origin of life, have to be analyzed in the thermodynamic limit, which is described in detail in the accompanying paper.
翻译:我们将学习理论应用于物理再适应系统,以试图发展生物进化理论,包括生命的起源,作为多层次的学习。我们制定了7项进化基本原则,这些基本原则似乎是必要的,足以使宇宙具有可观察性,并表明它们包含生物进化的主要特征,包括复制和自然选择。这些原则也自然地源于学习理论。我们利用神经网络的数学框架来制定进化理论,该框架对进化现象提供了详细的分析。为了展示拟议理论框架的潜力,我们通过分析在学习(回向回向回向回向回向回向)和预测(向前向回向回向回向)进化生物生物过程中的信息流动,得出了分子生物学中心多格马的通用版本。更复杂的进化现象,例如演化过程中的主要转变,特别是生命起源,必须在热动力极限中加以分析,后者在所附的文件中有详细描述。