Model compression aims to deploy deep neural networks (DNN) to mobile devices with limited computing power and storage resource. However, most of the existing model compression methods rely on manually defined rules, which requires domain expertise. In this paper, we propose an Auto Graph encoder-decoder Model Compression (AGMC) method combined with graph neural networks (GNN) and reinforcement learning (RL) to find the best compression policy. We model the target DNN as a graph and use GNN to learn the embeddings of the DNN automatically. In our experiments, we first compared our method with rule-based DNN embedding methods to show the graph auto encoder-decoder's effectiveness. Our learning-based DNN embedding achieved better performance and a higher compression ratio with fewer search steps. Moreover, we evaluated the AGMC on CIFAR-10 and ILSVRC-2012 datasets and compared handcrafted and learning-based model compression approaches. Our method outperformed handcrafted and learning-based methods on ResNet-56 with 3.6% and 1.8% higher accuracy, respectively. Furthermore, we achieved a higher compression ratio than state-of-the-art methods on MobileNet-V2 with just 0.93% accuracy loss.
翻译:模型压缩的目的是将深神经网络(DNN)应用到计算功率和存储资源有限的移动设备中。 但是,大多数现有模型压缩方法都依赖于手动定义的规则,这需要域内的专门知识。 在本文中,我们建议采用自动图形编码器-解码器模型压缩模型(AGMC)方法,结合图形神经网络(GNN)和强化学习(RL),以找到最佳压缩政策。我们将目标DNN作为图表,并使用GNNN自动学习DN嵌入。在我们的实验中,我们首先将我们的方法与基于规则的 DNNN嵌入方法进行比较,以显示图形自动编码器-解码器的效能。我们基于学习的DNNN嵌入模型实现了更好的性能和更高的压缩率,搜索步骤更少。此外,我们评估了CFAR-10和ILSVRC-2012的AGMC数据集,并比较了手工制作和学习模型的压缩方法。我们的方法比ResNet-56的手工制作和学习方法更精确,精确度分别为3.6%和1.8 %。 此外,我们实现了比Storma-rive2的精确度更高的精确率。