Deep neural networks have been demonstrated to be vulnerable to adversarial attacks: subtle perturbation can completely change the prediction result. Existing adversarial attacks on object detection focus on attacking anchor-based detectors, which may not work well for anchor-free detectors. In this paper, we propose the first adversarial attack dedicated to anchor-free detectors. It is a category-wise attack that attacks important pixels of all instances of a category simultaneously. Our attack manifests in two forms, sparse category-wise attack (SCA) and dense category-wise attack (DCA), that minimize the $L_0$ and $L_\infty$ norm-based perturbations, respectively. For DCA, we present three variants, DCA-G, DCA-L, and DCA-S, that select a global region, a local region, and a semantic region, respectively, to attack. Our experiments on large-scale benchmark datasets including PascalVOC, MS-COCO, and MS-COCO Keypoints indicate that our proposed methods achieve state-of-the-art attack performance and transferability on both object detection and human pose estimation tasks.
翻译:深心神经网络被证明很容易受到对抗性攻击:微妙的扰动可以完全改变预测结果。现有的对物体探测的对抗性攻击侧重于攻击锚基探测器,这对没有锚基探测器可能不起作用。在本文中,我们提议了第一次对准无锚探测器的对抗性攻击。这是一种类别攻击,同时攻击所有类别的重要像素。我们的攻击以两种形式表现:稀少的类别攻击(SCA)和密集的类别攻击(DCA),分别将0.0美元和0.5百万美元的常规干扰降到最低。对于DCA,我们提出了三种变体,即DCA-G、DCA-L和DCA-S,分别选择一个全球区域、一个当地区域和一个语区进行攻击。我们在大规模基准数据集上的实验,包括PascalVOC、MS-COCO和MS-CO-CO Keypoints, 表明我们提出的方法在物体探测和人类表面估计任务上都实现了最先进的攻击性能和可转移性。