Automated driving systems rely on 3D object detectors to recognize possible obstacles from LiDAR point clouds. However, recent works show the adversary can forge non-existent cars in the prediction results with a few fake points (i.e., appearing attack). By removing statistical outliers, existing defenses are however designed for specific attacks or biased by predefined heuristic rules. Towards more comprehensive mitigation, we first systematically inspect the mechanism of recent appearing attacks: Their common weaknesses are observed in crafting fake obstacles which (i) have obvious differences in the local parts compared with real obstacles and (ii) violate the physical relation between depth and point density. In this paper, we propose a novel plug-and-play defensive module which works by side of a trained LiDAR-based object detector to eliminate forged obstacles where a major proportion of local parts have low objectness, i.e., to what degree it belongs to a real object. At the core of our module is a local objectness predictor, which explicitly incorporates the depth information to model the relation between depth and point density, and predicts each local part of an obstacle with an objectness score. Extensive experiments show, our proposed defense eliminates at least 70% cars forged by three known appearing attacks in most cases, while, for the best previous defense, less than 30% forged cars are eliminated. Meanwhile, under the same circumstance, our defense incurs less overhead for AP/precision on cars compared with existing defenses. Furthermore, We validate the effectiveness of our proposed defense on simulation-based closed-loop control driving tests in the open-source system of Baidu's Apollo.


翻译:自动驾驶系统依赖于3D物体检测器从LiDAR点云中识别潜在的障碍物。然而,最近的研究表明,攻击者可以通过少量的伪造点(即出现攻击)在预测结果中伪造不存在的汽车。现有的防御措施通过移除统计上的异常值来针对特定攻击或偏向于预定义的启发式规则。为了更全面地进行缓解,本文首先系统地检查了最近出现攻击的机制:它们的共同弱点在于伪造的障碍物(i)与真实障碍物相比在局部部位上存在明显差异,以及(ii)违反深度和点密度之间的物理关系。在本文中,我们提出了一种新颖的即插即用的防御模块,该模块与已训练的基于LiDAR的物体检测器并行工作,以消除被伪造的障碍物,其中大部分的局部部位具有低的物体性,即它属于真实物体的程度。我们模块的核心是一个局部物体性预测器,它明确地整合了深度信息来模拟深度和点密度之间的关系,并预测一个障碍物的每个局部部位带有物体性分数。广泛的实验证明,我们提出的防御措施在大多数情况下消除了至少70%的被三种已知的出现攻击伪造的汽车,而对于最佳的以前的防御措施,消除的伪装汽车少于30%。同时,在相同的情况下,我们的防御对车辆的AP /精度造成的开销更小,与现有的防御相比。此外,我们在百度Apollo的开源系统中通过模拟闭环控制驾驶测试验证了我们的提出的防御措施的有效性。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
CVPR 2021 论文盘点-人脸识别篇
CVer
2+阅读 · 2022年5月25日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
视频目标检测:Flow-based
极市平台
22+阅读 · 2019年5月27日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
【泡泡一分钟】DS-SLAM: 动态环境下的语义视觉SLAM
泡泡机器人SLAM
23+阅读 · 2019年1月18日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
【泡泡一分钟】动态环境下稳健的单目SLAM
泡泡机器人SLAM
13+阅读 · 2018年3月22日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
20+阅读 · 2020年6月8日
Anomalous Instance Detection in Deep Learning: A Survey
VIP会员
相关VIP内容
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
CVPR 2021 论文盘点-人脸识别篇
CVer
2+阅读 · 2022年5月25日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
视频目标检测:Flow-based
极市平台
22+阅读 · 2019年5月27日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
【泡泡一分钟】DS-SLAM: 动态环境下的语义视觉SLAM
泡泡机器人SLAM
23+阅读 · 2019年1月18日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
【泡泡一分钟】动态环境下稳健的单目SLAM
泡泡机器人SLAM
13+阅读 · 2018年3月22日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员