Vehicular Metaverses represent emerging paradigms arising from the convergence of vehicle road cooperation, Metaverse, and augmented intelligence of things. Users engaging with Vehicular Metaverses (VMUs) gain entry by consistently updating their Vehicular Twins (VTs), which are deployed on RoadSide Units (RSUs) in proximity. The constrained RSU coverage and the consistently moving vehicles necessitate the continuous migration of VTs between RSUs through vehicle road cooperation, ensuring uninterrupted immersion services for VMUs. Nevertheless, the VT migration process faces challenges in obtaining adequate bandwidth resources from RSUs for timely migration, posing a resource trading problem among RSUs. In this paper, we tackle this challenge by formulating a game-theoretic incentive mechanism with multi-leader multi-follower, incorporating insights from social-awareness and queueing theory to optimize VT migration. To validate the existence and uniqueness of the Stackelberg Equilibrium, we apply the backward induction method. Theoretical solutions for this equilibrium are then obtained through the Alternating Direction Method of Multipliers (ADMM) algorithm. Moreover, owing to incomplete information caused by the requirements for privacy protection, we proposed a multi-agent deep reinforcement learning algorithm named MALPPO. MALPPO facilitates learning the Stackelberg Equilibrium without requiring private information from others, relying solely on past experiences. Comprehensive experimental results demonstrate that our MALPPO-based incentive mechanism outperforms baseline approaches significantly, showcasing rapid convergence and achieving the highest reward.


翻译:暂无翻译

0
下载
关闭预览

相关内容

VTS:VLSI Test Symposium Explanation:超大规模集成电路测试研讨会。 Publisher:IEEE。 SIT: http://dblp.uni-trier.de/db/conf/vts/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员