We propose a novel exact algorithm for generating connected Erdos-Renyi random graphs $G(n,p)$. The method couples the graph exploration process to an inhomogeneous Poisson random walk, which yields an exact sampler that runs in $O(n)$ time in the sparse regime $p=c/n$. We also show how the method extends to the $G(n,M)$ model via an additional acceptance-rejection step.
翻译:我们提出了一种生成连通Erdos-Renyi随机图$G(n,p)$的新型精确算法。该方法将图探索过程与非齐次泊松随机游走相耦合,从而产生一个在稀疏区域$p=c/n$下以$O(n)$时间运行的精确采样器。我们还展示了该方法如何通过额外的接受-拒绝步骤扩展到$G(n,M)$模型。