Inspired by the connection between classical regret measures employed in universal prediction and R\'{e}nyi divergence, we introduce a new class of universal predictors that depend on a real parameter $\alpha\geq 1$. This class interpolates two well-known predictors, the mixture estimators, that include the Laplace and the Krichevsky-Trofimov predictors, and the Normalized Maximum Likelihood (NML) estimator. We point out some advantages of this new class of predictors and study its benefits from two complementary viewpoints: (1) we prove its optimality when the maximal R\'{e}nyi divergence is considered as a regret measure, which can be interpreted operationally as a middle ground between the standard average and worst-case regret measures; (2) we discuss how it can be employed when NML is not a viable option, as an alternative to other predictors such as Luckiness NML. Finally, we apply the $\alpha$-NML predictor to the class of discrete memoryless sources (DMS), where we derive simple formulas to compute the predictor and analyze its asymptotic performance in terms of worst-case regret.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
29+阅读 · 2022年3月28日
Max-Margin Contrastive Learning
Arxiv
18+阅读 · 2021年12月21日
Memory-Gated Recurrent Networks
Arxiv
12+阅读 · 2020年12月24日
Talking-Heads Attention
Arxiv
15+阅读 · 2020年3月5日
Arxiv
30+阅读 · 2019年3月13日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
29+阅读 · 2022年3月28日
Max-Margin Contrastive Learning
Arxiv
18+阅读 · 2021年12月21日
Memory-Gated Recurrent Networks
Arxiv
12+阅读 · 2020年12月24日
Talking-Heads Attention
Arxiv
15+阅读 · 2020年3月5日
Arxiv
30+阅读 · 2019年3月13日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员