Climate change results in an increased probability of extreme weather events that put societies and businesses at risk on a global scale. Therefore, near real-time mapping of natural hazards is an emerging priority for the support of natural disaster relief, risk management, and informing governmental policy decisions. Recent methods to achieve near real-time mapping increasingly leverage deep learning (DL). However, DL-based approaches are designed for one specific task in a single geographic region based on specific frequency bands of satellite data. Therefore, DL models used to map specific natural hazards struggle with their generalization to other types of natural hazards in unseen regions. In this work, we propose a methodology to significantly improve the generalizability of DL natural hazards mappers based on pre-training on a suitable pre-task. Without access to any data from the target domain, we demonstrate this improved generalizability across four U-Net architectures for the segmentation of unseen natural hazards. Importantly, our method is invariant to geographic differences and differences in the type of frequency bands of satellite data. By leveraging characteristics of unlabeled images from the target domain that are publicly available, our approach is able to further improve the generalization behavior without fine-tuning. Thereby, our approach supports the development of foundation models for earth monitoring with the objective of directly segmenting unseen natural hazards across novel geographic regions given different sources of satellite imagery.


翻译:气候变化导致极端天气事件的概率增加,从而在全球范围内将社会和企业置于危险之中。因此,快速地图自然灾害成为支持自然灾害救援、风险管理和政策决策的新兴优先事项。最近的方法越来越倾向于利用深度学习(DL)实现快速地图,然而,基于DL的方法是针对单个地理区域和卫星数据特定频段上的一个具体任务设计的。因此,用于映射特定自然灾害的DL模型难以推广到未见过的区域的其他类型的自然灾害。在本文中,我们提出了一种方法,通过在适当的预任务上进行预训练,显著提高DL自然灾害映射器的泛化能力。在没有任何来自目标领域的数据的情况下,我们展示了这种改进的泛化能力在四个U-Net体系结构中对于未见过自然灾害的分割。重要的是,我们的方法对地理差异和卫星数据频段的类型差异是不变的。通过利用目标领域的未标记图像的特征,我们的方法能够在不需要微调的情况下进一步改进泛化行为。因此,我们的方法支持开发地球监测基础模型,以实现在不同的卫星图像来源下跨新地理区域直接进行自然灾害分割。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
115+阅读 · 2022年4月21日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
深度学习医学图像分析文献集
机器学习研究会
17+阅读 · 2017年10月13日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
19+阅读 · 2017年10月1日
【论文】图上的表示学习综述
机器学习研究会
12+阅读 · 2017年9月24日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年6月2日
Arxiv
15+阅读 · 2022年11月1日
Arxiv
11+阅读 · 2021年3月25日
Arxiv
38+阅读 · 2020年12月2日
Anomalous Instance Detection in Deep Learning: A Survey
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
深度学习医学图像分析文献集
机器学习研究会
17+阅读 · 2017年10月13日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
19+阅读 · 2017年10月1日
【论文】图上的表示学习综述
机器学习研究会
12+阅读 · 2017年9月24日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员