We consider non-convex stochastic optimization problems where the objective functions have super-linearly growing and discontinuous stochastic gradients. In such a setting, we provide a non-asymptotic analysis for the tamed unadjusted stochastic Langevin algorithm (TUSLA) introduced in Lovas et al. (2020). In particular, we establish non-asymptotic error bounds for the TUSLA algorithm in Wasserstein-1 and Wasserstein-2 distances. The latter result enables us to further derive non-asymptotic estimates for the expected excess risk. To illustrate the applicability of the main results, we consider an example from transfer learning with ReLU neural networks, which represents a key paradigm in machine learning. Numerical experiments are presented for the aforementioned example which support our theoretical findings. Hence, in this setting, we demonstrate both theoretically and numerically that the TUSLA algorithm can solve the optimization problem involving neural networks with ReLU activation function. Besides, we provide simulation results for synthetic examples where popular algorithms, e.g. ADAM, AMSGrad, RMSProp, and (vanilla) stochastic gradient descent (SGD) algorithm, may fail to find the minimizer of the objective functions due to the super-linear growth and the discontinuity of the corresponding stochastic gradient, while the TUSLA algorithm converges rapidly to the optimal solution. Moreover, we provide an empirical comparison of the performance of TUSLA with popular stochastic optimizers on real-world datasets, as well as investigate the effect of the key hyperparameters of TUSLA on its performance.


翻译:TUSLA算法在具有ReLU激活函数的神经网络中的非凸学习中的非渐近估计及应用 翻译后的摘要: 我们考虑非凸性随机优化问题,其中目标函数具有超线性增长和不连续的随机梯度。在这种情况下,我们为Lovas等人(2020)介绍的TUSLA算法提供非渐近估计分析。特别地,我们在Wasserstein-1和Wasserstein-2距离上建立了TUSLA算法的非渐近误差界。后者的结果使我们能够进一步推导预期过量风险的非渐近估计。为了说明主要结果的适用性,我们考虑了具有ReLU神经网络的迁移学习示例,这代表了机器学习中的关键范例。为了支持我们的理论结果,我们提供了上述示例的数值实验。因此,在这种情况下,我们从理论和数值角度证明了TUSLA算法可以解决涉及具有ReLU激活函数的神经网络的优化问题。此外,我们提供了合成示例的模拟结果,其中流行的算法,例如ADAM,AMSGrad,RMSProp和(vanilla)随机梯度下降(SGD)算法,可能由于相应随机梯度的超线性增长和不连续性而无法找到目标函数的极小化器,而TUSLA算法迅速收敛到最优解。此外,我们还提供了TUSLA与流行随机优化器在真实数据集上性能的实证比较,并调查TUSLA的关键超参数对其性能的影响。

0
下载
关闭预览

相关内容

机器学习损失函数概述,Loss Functions in Machine Learning
专知会员服务
81+阅读 · 2022年3月19日
Neural Eigenmap: 基于谱学习的结构化表示学习
PaperWeekly
1+阅读 · 2022年11月29日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
【CNN】一文读懂卷积神经网络CNN
产业智能官
18+阅读 · 2018年1月2日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年6月16日
Arxiv
0+阅读 · 2023年6月15日
VIP会员
相关VIP内容
机器学习损失函数概述,Loss Functions in Machine Learning
专知会员服务
81+阅读 · 2022年3月19日
相关资讯
Neural Eigenmap: 基于谱学习的结构化表示学习
PaperWeekly
1+阅读 · 2022年11月29日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
【CNN】一文读懂卷积神经网络CNN
产业智能官
18+阅读 · 2018年1月2日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员