Machine learning has enabled the prediction of quantum chemical properties with high accuracy and efficiency, allowing to bypass computationally costly ab initio calculations. Instead of training on a fixed set of properties, more recent approaches attempt to learn the electronic wavefunction (or density) as a central quantity of atomistic systems, from which all other observables can be derived. This is complicated by the fact that wavefunctions transform non-trivially under molecular rotations, which makes them a challenging prediction target. To solve this issue, we introduce general SE(3)-equivariant operations and building blocks for constructing deep learning architectures for geometric point cloud data and apply them to reconstruct wavefunctions of atomistic systems with unprecedented accuracy. Our model reduces prediction errors by up to two orders of magnitude compared to the previous state-of-the-art and makes it possible to derive properties such as energies and forces directly from the wavefunction in an end-to-end manner. We demonstrate the potential of our approach in a transfer learning application, where a model trained on low accuracy reference wavefunctions implicitly learns to correct for electronic many-body interactions from observables computed at a higher level of theory. Such machine-learned wavefunction surrogates pave the way towards novel semi-empirical methods, offering resolution at an electronic level while drastically decreasing computational cost. While we focus on physics applications in this contribution, the proposed equivariant framework for deep learning on point clouds is promising also beyond, say, in computer vision or graphics.


翻译:机器学习使得能够以高精确度和效率预测量化学特性,从而绕过计算成本高昂的初始计算。 较新的方法不是就固定的特性进行训练,而是试图将电子波函数(或密度)作为原子学系统的一个核心数量,从中可以得出所有其他的观测结果。由于波函数在分子旋转下直接改变非三角的化学特性,从而使它们成为具有挑战性的预测目标,这就使得这种情况复杂化了。 为了解决这个问题,我们引入了一般的 SE(3)-Qevarial 操作和构件,用于为几何点云数据建造深层次的深层次学习结构,并用于以前所未有的准确性来重建非全宇宙学系统的波函数。 我们的模型试图将预测误差从与以往的原子学系统相比,最多分为两个数量级,与以往的原子系统相比,这样模型可以使能量和力量直接从分子旋转状态中产生,从而使它们成为具有挑战性的预测目标。 为了解决这个问题,我们引入了一种转移学习应用方法,在低精确性参考值波函数上接受的模型,隐含地学习如何校正从在高层次上从可视点对等电子器官进行电子动作互动互动互动,而同时在深度的轨道上进行计算,在深度的理论上,在深度的深度理论上,在深度的轨道上,在深度分析,在深度分析,在深度的轨道上,在深度计算中,在深度计算中,在深度计算,在深度计算,在深度的轨道上,在深度分析,在深度的轨道上,在深度计算中,在深度计算,在深度计算,在深度分析,在深度计算中,在深度计算,在深度的轨道上,在深度的轨道上,在深度的轨道上,在深度的轨道上进行。

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
专知会员服务
31+阅读 · 2021年7月15日
专知会员服务
30+阅读 · 2021年6月12日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
人工智能 | SCI期刊专刊/国际会议信息7条
Call4Papers
7+阅读 · 2019年3月12日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
8+阅读 · 2021年2月19日
Arxiv
21+阅读 · 2021年2月13日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
人工智能 | SCI期刊专刊/国际会议信息7条
Call4Papers
7+阅读 · 2019年3月12日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员