This work addresses the block-diagonal semidefinite program (SDP) relaxations for the clique number of the Paley graphs. The size of the maximal clique (clique number) of a graph is a classic NP-complete problem; a Paley graph is a deterministic graph where two vertices are connected if their difference is a quadratic residue (square) in a finite field with the number of elements given by certain primes and prime powers. Improving the upper bound for the Paley graph clique number for prime powers that are non-squares is an open problem in combinatorics. Moreover, since quadratic residues exhibit pseudorandom properties, Paley graphs are related to the construction of deterministic restricted isometries, an open problem in compressed sensing. Recent work provides numerical evidence that the current upper bounds can be improved by the sum-of-squares (SOS) relaxations. In particular, the bounds given by the SOS relaxations of degree 4 (SOS-4) have been empirically observed to be growing at an order smaller than square root of the prime. However, computations of SOS-4 appear to be intractable with respect to large graphs. Gvozdenovic et al. introduced a more computationally efficient block-diagonal hierarchy of SDPs and computed the values of these SDPs of degrees 2 (L2) for the Paley graph clique numbers associated with primes p less or equal to 809, which bound from above the corresponding SOS-4 relaxations. We compute the values of the L2 relaxations for p's between 821 and 997. Our results provide some numerical evidence that these relaxations, and therefore also the SOS-4 relaxations, may be scaling at an order smaller than the square root of p. However, due to the size of the SDPs, we have not been able to compute L2 relaxations for p's greater than 997. Therefore, our scaling estimate is not conclusive and presents an interesting open problem for further study.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Graph Transformer近期进展
专知会员服务
61+阅读 · 2023年1月5日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
24+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
71+阅读 · 2016年11月26日
国家自然科学基金
5+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
29+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
VIP会员
相关VIP内容
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
71+阅读 · 2016年11月26日
相关基金
国家自然科学基金
5+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
29+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员