This paper demonstrates the learning of the underlying device physics by mapping device structure images to their corresponding Current-Voltage (IV) characteristics using a novel framework based on variational autoencoders (VAE). Since VAE is used, domain expertise is not required and the framework can be quickly deployed on any new device and measurement. This is expected to be useful in the compact modeling of novel devices when only device cross-sectional images and electrical characteristics are available (e.g. novel emerging memory). Technology Computer-Aided Design (TCAD) generated and hand-drawn Metal-Oxide-Semiconductor (MOS) device images and noisy drain-current-gate-voltage curves (IDVG) are used for the demonstration. The framework is formed by stacking two VAEs (one for image manifold learning and one for IDVG manifold learning) which communicate with each other through the latent variables. Five independent variables with different strengths are used. It is shown that it can perform inverse design (generate a design structure for a given IDVG) and forward prediction (predict IDVG for a given structure image, which can be used for compact modeling if the image is treated as device parameters) successfully. Since manifold learning is used, the machine is shown to be robust against noise in the inputs (i.e. using hand-drawn images and noisy IDVG curves) and not confused by weak and irrelevant independent variables.


翻译:本文展示了一种使用基于变分自编码器(VAE)的新框架将设备结构图像映射到其对应的电流-电压(IV)特征的方法,以学习潜在的设备物理学。由于使用了VAE,因此不需要领域专业知识,该框架可在任何新设备和测量上快速部署。这在只有设备横截面图片和电气特性可用(例如新型新兴记忆体)时,可以在新型设备的紧凑建模中发挥作用。本文使用了技术电脑辅助设计(TCAD)生成和手绘的金属-氧化物-半导体(MOS)器件图像以及带噪音的漏电流-栅电压曲线(IDVG)进行演示。该框架由两个VAE(一个用于图像流形学习,一个用于IDVG流形学习)堆叠而成,它们通过潜变量进行通信。使用五个不同强度的自变量。结果表明,它可以成功执行反向设计(针对给定的IDVG生成设计结构)和正向预测(预测给定结构图像的IDVG,如果将图像视为设备参数,则可用于紧凑建模)。由于使用了流形学习,机器在输入中含有噪声(即使用手绘图像和带噪音的IDVG曲线)时表现出鲁棒性,并且不会被弱和无关的自变量所困扰。

0
下载
关闭预览

相关内容

【Google】无监督机器翻译,Unsupervised Machine Translation
专知会员服务
35+阅读 · 2020年3月3日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
21+阅读 · 2021年12月31日
VIP会员
相关基金
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员