The symmetries described by Pin groups are the result of combining a finite number of discrete reflections in (hyper)planes. The current work shows how an analysis using geometric algebra provides a picture complementary to that of the classic matrix Lie algebra approach, while retaining information about the number of reflections in a given transformation. This imposes a graded structure on Lie groups, which is not evident in their matrix representation. By embracing this graded structure, the invariant decomposition theorem was proven: any composition of $k$ linearly independent reflections can be decomposed into $\lceil k/2 \rceil$ commuting factors, each of which is the product of at most two reflections. This generalizes a conjecture by M. Riesz, and has e.g. the Mozzi-Chasles' theorem as its 3D Euclidean special case. To demonstrate its utility, we briefly discuss various examples such as Lorentz transformations, Wigner rotations, and screw transformations. The invariant decomposition also directly leads to closed form formulas for the exponential and logarithmic function for all Spin groups, and identifies element of geometry such as planes, lines, points, as the invariants of $k$-reflections. We conclude by presenting novel matrix/vector representations for geometric algebras $\mathbb{R}_{pqr}$, and use this in E(3) to illustrate the relationship with the classic covariant, contravariant and adjoint representations for the transformation of points, planes and lines.


翻译:Pin 组描述的对称是将( 超) 平方平面中的离散反射数量有限{ 离散反射组合的结果。 目前的工作显示, 使用几何代数的分析能够提供与经典矩阵 Lie代数法相补充的图片, 同时保留关于特定变换中反射数量的信息。 这给 Lie 组强制设置了一个分级结构, 其矩阵表达方式并不明显。 接受这个分级结构, 证明了不易分解的理论: 任何美元线性独立反射的构成可以解成$lcel k/2\rice$ Screalgeblation 运算要素, 每一种都是两个反射模型的产物。 这一般化了M. Riesz的反射度, 并且将Mozzi- Chasles 的方言作为3Duclideidean 特例。 为了展示它的实用性, 我们简要地讨论各种例子, 比如Lorentz 转换, Wigner 旋调调, 和螺旋值变换值。

0
下载
关闭预览

相关内容

专知会员服务
75+阅读 · 2021年3月16日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
105+阅读 · 2020年5月3日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
186+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
revelation of MONet
CreateAMind
5+阅读 · 2019年6月8日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
计算机视觉近一年进展综述
机器学习研究会
8+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月10日
Arxiv
0+阅读 · 2021年9月9日
Arxiv
7+阅读 · 2020年6月29日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
revelation of MONet
CreateAMind
5+阅读 · 2019年6月8日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
计算机视觉近一年进展综述
机器学习研究会
8+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员