As cyber threats grow increasingly sophisticated, reinforcement learning (RL) is emerging as a promising technique to create intelligent and adaptive cyber defense systems. However, most existing autonomous defensive agents have overlooked the inherent graph structure of computer networks subject to cyber attacks, potentially missing critical information and constraining their adaptability. To overcome these limitations, we developed a custom version of the Cyber Operations Research Gym (CybORG) environment, encoding network state as a directed graph with realistic low-level features. We employ a Graph Attention Network (GAT) architecture to process node, edge, and global features, and adapt its output to be compatible with policy gradient methods in RL. Our GAT-based approach offers key advantages over flattened alternatives: policies that demonstrate resilience to certain types of unexpected dynamic network topology changes, reasonable generalisation to networks of varying sizes within the same structural distribution, and interpretable defensive actions grounded in tangible network properties. We demonstrate that GAT defensive policies can be trained using our low-level directed graph observations, even when unexpected connections arise during simulation. Evaluations across networks of different sizes, but consistent subnetwork structure, show our policies achieve comparable performance to policies trained specifically for each network configuration. Our study contributes to the development of robust cyber defence systems that can better adapt to real-world network security challenges.
翻译:暂无翻译