Previous online 3D dense reconstruction methods often cost massive memory storage while achieving unsatisfactory surface quality mainly due to the usage of stagnant underlying geometry representation, such as TSDF (truncated signed distance functions) or surfels, without any knowledge of the scene priors. In this paper, we present DI-Fusion (Deep Implicit Fusion), based on a novel 3D representation, called Probabilistic Local Implicit Voxels (PLIVoxs), for online 3D reconstruction using a commodity RGB-D camera. Our PLIVox encodes scene priors considering both the local geometry and uncertainty parameterized by a deep neural network. With such deep priors, we demonstrate by extensive experiments that we are able to perform online implicit 3D reconstruction achieving state-of-the-art mapping quality and camera trajectory estimation accuracy, while taking much less storage compared with previous online 3D reconstruction approaches.
翻译:先前的在线三维密集重建方法往往花费大量记忆存储成本,而其表面质量却不能令人满意,这主要是因为使用了停滞的基本几何表示法,如TSDF(短短的签名距离功能)或冲浪仪,对现场前科一无所知。 在本文中,我们展示了DI-Fusion(深隐形混凝土 ), 其基础是一个新型的三维代表法, 叫做“ 概率本地隐性隐性Voxls (PLIVox) ”, 用于使用一种商品 RGB-D 相机进行在线的三维重建。 我们的PLIVox 编码场景的前身考虑到由深层神经网络参数测定的本地几何和不确定性。 在如此深层的前科中, 我们通过广泛的实验展示了我们能够进行在线隐性三维重建, 实现最新绘图质量和相机轨迹估计准确性, 而与先前的在线三维重建方法相比存储量要少得多。