Causal discovery methods can identify valid adjustment sets for causal effect estimation for a pair of target variables, even when the underlying causal graph is unknown. Global causal discovery methods focus on learning the whole causal graph and therefore enable the recovery of optimal adjustment sets, i.e., sets with the lowest asymptotic variance, but they quickly become computationally prohibitive as the number of variables grows. Local causal discovery methods offer a more scalable alternative by focusing on the local neighborhood of the target variables, but are restricted to statistically suboptimal adjustment sets. In this work, we propose Local Optimal Adjustments Discovery (LOAD), a sound and complete causal discovery approach that combines the computational efficiency of local methods with the statistical optimality of global methods. First, LOAD identifies the causal relation between the targets and tests if the causal effect is identifiable by using only local information. If it is identifiable, it then finds the optimal adjustment set by leveraging local causal discovery to infer the mediators and their parents. Otherwise, it returns the locally valid parent adjustment sets based on the learned local structure. In our experiments on synthetic and realistic data LOAD outperforms global methods in scalability, while providing more accurate effect estimation than local methods.
翻译:暂无翻译