We study a \emph{financial} version of the classic online problem of scheduling weighted packets with deadlines. The main novelty is that, while previous works assume packets have \emph{fixed} weights throughout their lifetime, this work considers packets with \emph{time-decaying} values. Such considerations naturally arise and have wide applications in financial environments, where the present value of future actions may be discounted. We analyze the competitive ratio guarantees of scheduling algorithms under a range of discount rates encompassing the ``traditional'' undiscounted case where weights are fixed (i.e., a discount rate of 1), the fully discounted ``myopic'' case (i.e., a rate of 0), and those in between. We show how existing methods from the literature perform suboptimally in the more general discounted setting. Notably, we devise a novel memoryless deterministic algorithm, and prove that it guarantees the best possible competitive ratio attainable by deterministic algorithms for discount factors up to $\approx 0.77$. Moreover, we develop a randomized algorithm and prove that it outperforms the best possible deterministic algorithm, for any discount rate. While we highlight the relevance of our framework and results to blockchain transaction scheduling in particular, our approach and analysis techniques are general and may be of independent interest.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
12+阅读 · 2023年5月22日
Arxiv
14+阅读 · 2022年10月15日
Arxiv
15+阅读 · 2022年5月14日
Arxiv
14+阅读 · 2018年5月15日
Arxiv
22+阅读 · 2018年2月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
12+阅读 · 2023年5月22日
Arxiv
14+阅读 · 2022年10月15日
Arxiv
15+阅读 · 2022年5月14日
Arxiv
14+阅读 · 2018年5月15日
Arxiv
22+阅读 · 2018年2月14日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员