Accurate segmentation of infant brain MRI is critical for studying early neurodevelopment and diagnosing neurological disorders. Yet, it remains a fundamental challenge due to continuously evolving anatomy of the subjects, motion artifacts, and the scarcity of high-quality labeled data. In this work, we present LODi, a novel framework that utilizes prior knowledge from an adult brain MRI segmentation model to enhance the segmentation performance of infant scans. Given the abundance of publicly available adult brain MRI data, we pre-train a segmentation model on a large adult dataset as a starting point. Through transfer learning and domain adaptation strategies, we progressively adapt the model to the 0-2 year-old population, enabling it to account for the anatomical and imaging variability typical of infant scans. The adaptation of the adult model is carried out using weakly supervised learning on infant brain scans, leveraging silver-standard ground truth labels obtained with FreeSurfer. By introducing a novel training strategy that integrates hierarchical feature refinement and multi-level consistency constraints, our method enables fast, accurate, age-adaptive segmentation, while mitigating scanner and site-specific biases. Extensive experiments on both internal and external datasets demonstrate the superiority of our approach over traditional supervised learning and domain-specific models. Our findings highlight the advantage of leveraging adult brain priors as a foundation for age-flexible neuroimaging analysis, paving the way for more reliable and generalizable brain MRI segmentation across the lifespan.
翻译:暂无翻译