The estimation of regression parameters in one dimensional broken stick models is a research area of statistics with an extensive literature. We are interested in extending such models by aiming to recover two or more intersecting (hyper)planes in multiple dimensions. In contrast to approaches aiming to recover a given number of piecewise linear components using either a grid search or local smoothing around the change points, we show how to use Nesterov smoothing to obtain a smooth and everywhere differentiable approximation to a piecewise linear regression model with a uniform error bound. The parameters of the smoothed approximation are then efficiently found by minimizing a least squares objective function using a quasi-Newton algorithm. Our main contribution is threefold: We show that the estimates of the Nesterov smoothed approximation of the broken plane model are also $\sqrt{n}$ consistent and asymptotically normal, where $n$ is the number of data points on the two planes. Moreover, we show that as the degree of smoothing goes to zero, the smoothed estimates converge to the unsmoothed estimates and present an algorithm to perform parameter estimation. We conclude by presenting simulation results on simulated data together with some guidance on suitable parameter choices for practical applications.
翻译:暂无翻译