We study the problem of learning revenue-optimal multi-bidder auctions from samples when the samples of bidders' valuations can be adversarially corrupted or drawn from distributions that are adversarially perturbed. First, we prove tight upper bounds on the revenue we can obtain with a corrupted distribution under a population model, for both regular valuation distributions and distributions with monotone hazard rate (MHR). We then propose new algorithms that, given only an ``approximate distribution'' for the bidder's valuation, can learn a mechanism whose revenue is nearly optimal simultaneously for all ``true distributions'' that are $\alpha$-close to the original distribution in Kolmogorov-Smirnov distance. The proposed algorithms operate beyond the setting of bounded distributions that have been studied in prior works, and are guaranteed to obtain a fraction $1-O(\alpha)$ of the optimal revenue under the true distribution when the distributions are MHR. Moreover, they are guaranteed to yield at least a fraction $1-O(\sqrt{\alpha})$ of the optimal revenue when the distributions are regular. We prove that these upper bounds cannot be further improved, by providing matching lower bounds. Lastly, we derive sample complexity upper bounds for learning a near-optimal auction for both MHR and regular distributions.


翻译:我们研究从样本中学习收入最佳多投标拍卖的问题,当投标人的估价样本可能受到对抗性腐蚀或从敌对性干扰的分布中提取时,我们就会从抽样中学习收入的最佳多投标拍卖。首先,我们证明,在人口模式下,我们可以通过腐败分配获得的收入,对于定期估值分配和单一危害率(MHR)的分布来说,对于定期估值分配和单一危害率(MHR)的分布来说,我们可以得到收入的最佳上限。然后,我们提出新的算法,这种算法只给投标人的估价“近似分配 ” 提供“近似分配 ”,就可以学习一种机制,其收入对于所有真正分配的“alpha$ ” 几乎是最佳的,对于科尔莫戈洛夫-斯米尔诺夫距离的原始分配来说是接近的。提议的算法在设定先前工程研究的封闭性分配范围范围之外,还保证在分配量为MHR的情况下,在真正分配的情况下获得最优收入的一小部分。此外,它们保证至少能同时获得部分的收益最佳分配额为1-(sqrth rphy),当我们能够更经常地获得最接近最接近最精确的分布时,那么,最接近最接近最接近最接近最精确地学习。

0
下载
关闭预览

相关内容

最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
106+阅读 · 2020年5月15日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年9月13日
Arxiv
0+阅读 · 2021年9月13日
Arxiv
0+阅读 · 2021年9月10日
Arxiv
3+阅读 · 2018年10月18日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员