Implicit feedback is central to modern recommender systems but is inherently noisy, often impairing model training and degrading user experience. At scale, such noise can mislead learning processes, reducing both recommendation accuracy and platform value. Existing denoising strategies typically overlook the entity-specific nature of noise while introducing high computational costs and complex hyperparameter tuning. To address these challenges, we propose \textbf{EARD} (\textbf{E}ntity-\textbf{A}ware \textbf{R}eliability-\textbf{D}riven Denoising), a lightweight framework that shifts the focus from interaction-level signals to entity-level reliability. Motivated by the empirical observation that training loss correlates with noise, EARD quantifies user and item reliability via their average training losses as a proxy for reputation, and integrates these entity-level factors with interaction-level confidence. The framework is \textbf{model-agnostic}, \textbf{computationally efficient}, and requires \textbf{only two intuitive hyperparameters}. Extensive experiments across multiple datasets and backbone models demonstrate that EARD yields substantial improvements over state-of-the-art baselines (e.g., up to 27.01\% gain in NDCG@50), while incurring negligible additional computational cost. Comprehensive ablation studies and mechanism analyses further confirm EARD's robustness to hyperparameter choices and its practical scalability. These results highlight the importance of entity-aware reliability modeling for denoising implicit feedback and pave the way for more robust recommendation research.
翻译:暂无翻译