Deep learning (DL) based hyperspectral images (HSIs) denoising approaches directly learn the nonlinear mapping between observed noisy images and underlying clean images. They normally do not consider the physical characteristics of HSIs, therefore making them lack of interpretability that is key to understand their denoising mechanism.. In order to tackle this problem, we introduce a novel model guided interpretable network for HSI denoising. Specifically, fully considering the spatial redundancy, spectral low-rankness and spectral-spatial properties of HSIs, we first establish a subspace based multi-dimensional sparse model. This model first projects the observed HSIs into a low-dimensional orthogonal subspace, and then represents the projected image with a multidimensional dictionary. After that, the model is unfolded into an end-to-end network named SMDS-Net whose fundamental modules are seamlessly connected with the denoising procedure and optimization of the model. This makes SMDS-Net convey clear physical meanings, i.e., learning the low-rankness and sparsity of HSIs. Finally, all key variables including dictionaries and thresholding parameters are obtained by the end-to-end training. Extensive experiments and comprehensive analysis confirm the denoising ability and interpretability of our method against the state-of-the-art HSI denoising methods.


翻译:深度学习( DL) 基于超光谱图像( HSIs) 的深度学习( 高光谱图像) 解密方法直接学习观测到的噪音图像和基本清洁图像之间的非线性绘图, 通常不考虑HSI的物理特性, 因此它们缺乏理解其去除机制的关键解释性。 为了解决这个问题, 我们引入了一个新的模型可解释的HSI解密网络。 具体地说, 我们充分考虑到HSI的空间冗余、 光谱低级别和光谱空间特性, 我们首先建立一个基于子空间的多维稀释模型。 这个模型首先将所观测到的 HSI 投射到一个低维度或远度的子空间, 然后用一个多维字典来代表所预测的图像。 之后, 该模型将发展成一个名为 SMDS- Net 的端端端网络, 其基本模块与脱色程序和模型的优化紧密相连。 这样, SMDS- Net 就能传达清晰的物理含义, 即学习HSI 的低级和宽度分散模式。 最后, 所有关键变量, 包括HSI 的深度和深度分析, 通过HSI 级和深度分析, 通过HSI 最终的方法, 的升级和深度分析, 和深度分析, 和深度分析。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
一份循环神经网络RNNs简明教程,37页ppt
专知会员服务
170+阅读 · 2020年5月6日
【ICLR-2020】网络反卷积,NETWORK DECONVOLUTION
专知会员服务
38+阅读 · 2020年2月21日
【MIT深度学习课程】深度序列建模,Deep Sequence Modeling
专知会员服务
76+阅读 · 2020年2月3日
【新书】Python编程基础,669页pdf
专知会员服务
187+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Network Embedding 指南
专知
21+阅读 · 2018年8月13日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Arxiv
0+阅读 · 2021年1月21日
Arxiv
3+阅读 · 2017年10月1日
VIP会员
相关VIP内容
专知会员服务
44+阅读 · 2020年10月31日
一份循环神经网络RNNs简明教程,37页ppt
专知会员服务
170+阅读 · 2020年5月6日
【ICLR-2020】网络反卷积,NETWORK DECONVOLUTION
专知会员服务
38+阅读 · 2020年2月21日
【MIT深度学习课程】深度序列建模,Deep Sequence Modeling
专知会员服务
76+阅读 · 2020年2月3日
【新书】Python编程基础,669页pdf
专知会员服务
187+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Network Embedding 指南
专知
21+阅读 · 2018年8月13日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Top
微信扫码咨询专知VIP会员