Face recognition has long been an active research area in the field of artificial intelligence, particularly since the rise of deep learning in recent years. In some practical situations, each identity has only a single sample available for training. Face recognition under this situation is referred to as single sample face recognition and poses significant challenges to the effective training of deep models. Therefore, in recent years, researchers have attempted to unleash more potential of deep learning and improve the model recognition performance in the single sample situation. While several comprehensive surveys have been conducted on traditional single sample face recognition approaches, emerging deep learning based methods are rarely involved in these reviews. Accordingly, we focus on the deep learning-based methods in this paper, classifying them into virtual sample methods and generic learning methods. In the former category, virtual images or virtual features are generated to benefit the training of the deep model. In the latter one, additional multi-sample generic sets are used. There are three types of generic learning methods: combining traditional methods and deep features, improving the loss function, and improving network structure, all of which are covered in our analysis. Moreover, we review face datasets that have been commonly used for evaluating single sample face recognition models and go on to compare the results of different types of models. Additionally, we discuss problems with existing single sample face recognition methods, including identity information preservation in virtual sample methods, domain adaption in generic learning methods. Furthermore, we regard developing unsupervised methods is a promising future direction, and point out that the semantic gap as an important issue that needs to be further considered.


翻译:长期以来,在人工智能领域,尤其是自近年来深层次学习以来,面对面的承认一直是积极的研究领域,特别是自近年来深入学习以来,人工智能领域的一个积极研究领域。在某些实际情况下,每个身份只有一个可供培训的样本。在这种情况下,面的承认被称为单一样本的承认,对深层模型的有效培训构成重大挑战。因此,近年来,研究人员试图在单一样本情况下,发挥更多的深层学习潜力,改进模型识别业绩。虽然对传统单一样本的识别方法进行了几次全面调查,但这些审查很少涉及新的深层学习方法。因此,我们注重本文中深层学习方法,将其分类为虚拟样本方法和通用学习方法。在前一类别中,虚拟图像或虚拟特征生成,以有利于深层模型的培训。在后一类别中,还使用了更多的多样本通用方法。有三种通用学习方法:将传统方法和深层特征结合起来,改进损失功能,改进网络结构,所有这些方法都包含在我们的分析中。此外,我们审视了在评估单一样本面面的重要识别方法和通用学习方法时通常使用的数据设置。我们讨论了一种不同样本的标准化方法,在评估中,先变现的样本方法,然后讨论。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
专知会员服务
38+阅读 · 2020年9月6日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
4+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
10+阅读 · 2021年11月10日
Arxiv
126+阅读 · 2020年9月6日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
A Comprehensive Survey on Transfer Learning
Arxiv
117+阅读 · 2019年11月7日
Deep Face Recognition: A Survey
Arxiv
17+阅读 · 2019年2月12日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
72+阅读 · 2018年12月22日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关论文
Arxiv
10+阅读 · 2021年11月10日
Arxiv
126+阅读 · 2020年9月6日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
A Comprehensive Survey on Transfer Learning
Arxiv
117+阅读 · 2019年11月7日
Deep Face Recognition: A Survey
Arxiv
17+阅读 · 2019年2月12日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
72+阅读 · 2018年12月22日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
4+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员