We investigate the relation between $\delta$ and $\epsilon$ required for obtaining a $(1+\delta)$-approximation in time $N^{2-\epsilon}$ for closest pair problems under various distance metrics, and for other related problems in fine-grained complexity. Specifically, our main result shows that if it is impossible to (exactly) solve the (bichromatic) inner product (IP) problem for vectors of dimension $c \log N$ in time $N^{2-\epsilon}$, then there is no $(1+\delta)$-approximation algorithm for (bichromatic) Euclidean Closest Pair running in time $N^{2-2\epsilon}$, where $\delta \approx (\epsilon/c)^2$ (where $\approx$ hides $\polylog$ factors). This improves on the prior result due to Chen and Williams (SODA 2019) which gave a smaller polynomial dependence of $\delta$ on $\epsilon$, on the order of $\delta \approx (\epsilon/c)^6$. Our result implies in turn that no $(1+\delta)$-approximation algorithm exists for Euclidean closest pair for $\delta \approx \epsilon^4$, unless an algorithmic improvement for IP is obtained. This in turn is very close to the approximation guarantee of $\delta \approx \epsilon^3$ for Euclidean closest pair, given by the best known algorithm of Almam, Chan, and Williams (FOCS 2016). By known reductions, a similar result follows for a host of other related problems in fine-grained hardness of approximation. Our reduction combines the hardness of approximation framework of Chen and Williams, together with an MA communication protocol for IP over a small alphabet, that is inspired by the MA protocol of Chen (Theory of Computing, 2020).


翻译:暂无翻译

0
下载
关闭预览

相关内容

两人亲密社交应用,官网: trypair.com/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年12月15日
Arxiv
0+阅读 · 2023年12月15日
Arxiv
0+阅读 · 2023年12月14日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
0+阅读 · 2023年12月15日
Arxiv
0+阅读 · 2023年12月15日
Arxiv
0+阅读 · 2023年12月14日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员