We introduce Performers, Transformer architectures which can estimate regular (softmax) full-rank-attention Transformers with provable accuracy, but using only linear (as opposed to quadratic) space and time complexity, without relying on any priors such as sparsity or low-rankness. To approximate softmax attention-kernels, Performers use a novel Fast Attention Via positive Orthogonal Random features approach (FAVOR+), which may be of independent interest for scalable kernel methods. FAVOR+ can be also used to efficiently model kernelizable attention mechanisms beyond softmax. This representational power is crucial to accurately compare softmax with other kernels for the first time on large-scale tasks, beyond the reach of regular Transformers, and investigate optimal attention-kernels. Performers are linear architectures fully compatible with regular Transformers and with strong theoretical guarantees: unbiased or nearly-unbiased estimation of the attention matrix, uniform convergence and low estimation variance. We tested Performers on a rich set of tasks stretching from pixel-prediction through text models to protein sequence modeling. We demonstrate competitive results with other examined efficient sparse and dense attention methods, showcasing effectiveness of the novel attention-learning paradigm leveraged by Performers.


翻译:我们引入了表演者、变压器结构,这些结构可以对常规(软体)全端注意型变压器进行可辨识准确性的估计,但只能使用线性(相对于四面形)空间和时间复杂性,而不必依赖任何前科,例如宽度或低级。为了接近软体注意力内核,表演者使用一种新型快速注意感应式正正正正正正调随机特效方法(FAVOR+),这可能与可伸缩的内核方法独立相关。FAVOR+还可以用于高效模拟软体外的内嵌式注意机制。这种代表力对于将软体与大规模任务(相对于四面形)空间和时间复杂性进行准确比较至关重要,而不必依赖常规变压器或低级等任何前科,并调查最佳的注意力内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核

0
下载
关闭预览

相关内容

最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
最新《Transformers模型》教程,64页ppt
专知会员服务
276+阅读 · 2020年11月26日
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
专知会员服务
53+阅读 · 2020年10月11日
专知会员服务
52+阅读 · 2020年9月7日
《可解释的机器学习-interpretable-ml》238页pdf
专知会员服务
195+阅读 · 2020年2月24日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
一文读懂Attention机制
机器学习与推荐算法
63+阅读 · 2020年6月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
暗通沟渠:Multi-lingual Attention
我爱读PAMI
7+阅读 · 2018年2月24日
【音乐】Attention
英语演讲视频每日一推
3+阅读 · 2017年8月22日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
4+阅读 · 2019年1月1日
Arxiv
8+阅读 · 2018年11月21日
Arxiv
9+阅读 · 2018年2月4日
VIP会员
相关VIP内容
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
最新《Transformers模型》教程,64页ppt
专知会员服务
276+阅读 · 2020年11月26日
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
专知会员服务
53+阅读 · 2020年10月11日
专知会员服务
52+阅读 · 2020年9月7日
《可解释的机器学习-interpretable-ml》238页pdf
专知会员服务
195+阅读 · 2020年2月24日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
相关资讯
一文读懂Attention机制
机器学习与推荐算法
63+阅读 · 2020年6月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
暗通沟渠:Multi-lingual Attention
我爱读PAMI
7+阅读 · 2018年2月24日
【音乐】Attention
英语演讲视频每日一推
3+阅读 · 2017年8月22日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
相关论文
Arxiv
14+阅读 · 2020年12月17日
Arxiv
4+阅读 · 2019年1月1日
Arxiv
8+阅读 · 2018年11月21日
Arxiv
9+阅读 · 2018年2月4日
Top
微信扫码咨询专知VIP会员