Past works have shown that, somewhat surprisingly, over-parametrization can help generalization in neural networks. Towards explaining this phenomenon, we adopt a margin-based perspective. We establish: 1) for multi-layer feedforward relu networks, the global minimizer of a weakly-regularized cross-entropy loss has the maximum normalized margin among all networks, 2) as a result, increasing the over-parametrization improves the normalized margin and generalization error bounds for two-layer networks. In particular, an infinite-size neural network enjoys the best generalization guarantees. The typical infinite feature methods are kernel methods; we compare the neural net margin with that of kernel methods and construct natural instances where kernel methods have much weaker generalization guarantees. We validate this gap between the two approaches empirically. Finally, this infinite-neuron viewpoint is also fruitful for analyzing optimization. We show that a perturbed gradient flow on infinite-size networks finds a global optimizer in polynomial time.


翻译:过去的工作表明,有些令人惊讶的是,超平衡化有助于神经网络的概括化。在解释这一现象时,我们采用了基于边距的视角。我们建立了:1)多层进料回流网络,全球将所有网络中所有常规化程度低的跨热带损失的最小化幅度最大,2)结果,超平衡化的扩大改善了两层网络的正常差值和一般化差值。特别是,无限规模神经网络享有最佳的一般化保障。典型的无限特征方法是内核方法;我们比较神经网边距与内核方法的边缘,并构建内核方法较弱的自然实例。我们从经验上验证两种方法之间的这一差距。最后,无限中子观点对于分析优化也颇有成效。我们显示,无限规模网络上一个环绕的梯度流在多球时会发现一个全球优化器。

0
下载
关闭预览

相关内容

【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
156+阅读 · 2020年5月26日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
35+阅读 · 2020年4月15日
专知会员服务
162+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Optimization for deep learning: theory and algorithms
Arxiv
106+阅读 · 2019年12月19日
Arxiv
23+阅读 · 2018年10月1日
Arxiv
19+阅读 · 2018年6月27日
Arxiv
26+阅读 · 2018年2月27日
VIP会员
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员