We study the optimization aspects of personalized Federated Learning (FL). We develop a universal optimization theory applicable to all convex personalized FL models in the literature. In particular, we propose a general personalized objective capable of recovering essentially any existing personalized FL objective as a special case. We design several optimization techniques to minimize the general objective, namely a tailored variant of Local SGD and variants of accelerated coordinate descent/accelerated SVRCD. We demonstrate the practicality and/or optimality of our methods both in terms of communication and local computation. Lastly, we argue about the implications of our general optimization theory when applied to solve specific personalized FL objectives.


翻译:我们研究了个性化联邦学习(FL)的优化方面。我们开发了一种适用于文献中所有精细个性化FL模型的普遍优化理论。特别是,我们提出了一个一般性的个性化目标,能够将任何现有的个性化FL目标基本上作为特例加以恢复。我们设计了几种优化技术,以尽量减少总目标,即当地SGD的量身定制变体和加速协调血统/加速的SVRCD的变体。我们从通信和地方计算两方面展示了我们方法的实用性和/或最佳性。最后,我们争论了我们的一般优化理论在用于解决个性化FL具体目标时的影响。

0
下载
关闭预览

相关内容

最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
89+阅读 · 2020年12月2日
【伯克利-Ke Li】学习优化,74页ppt,Learning to Optimize
专知会员服务
41+阅读 · 2020年7月23日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
110+阅读 · 2020年6月10日
深度强化学习策略梯度教程,53页ppt
专知会员服务
184+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
280+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
10+阅读 · 2021年3月30日
Optimization for deep learning: theory and algorithms
Arxiv
106+阅读 · 2019年12月19日
Universal Transformers
Arxiv
5+阅读 · 2019年3月5日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员