We propose a novel framework for safe navigation in dynamic environments by integrating Koopman operator theory with conformal prediction. Our approach leverages data-driven Koopman approximation to learn nonlinear dynamics and employs conformal prediction to quantify uncertainty, providing statistical guarantees on approximation errors. This uncertainty is effectively incorporated into a Model Predictive Controller (MPC) formulation through constraint tightening, ensuring robust safety guarantees. We implement a layered control architecture with a reference generator providing waypoints for safe navigation. The effectiveness of our methods is validated in simulation.
翻译:暂无翻译