Large-scale foundation models for EEG signals offer a promising path to generalizable brain-computer interface (BCI) applications, but they often suffer from misalignment between pretraining objectives and downstream tasks, as well as significant cross-subject distribution shifts. This paper addresses these challenges by introducing a two-stage alignment strategy that bridges the gap between generic pretraining and specific EEG decoding tasks. First, we propose NeuroTTT: a domain-specific self-supervised fine-tuning paradigm that augments the foundation model with task-relevant self-supervised objectives, aligning latent representations to important spectral, spatial, and temporal EEG features without requiring additional labeled data. Second, we incorporate test-time training (TTT) at inference, we perform (i) self-supervised test-time training on individual unlabeled test samples and (ii) prediction entropy minimization (Tent), which updates only normalization statistics to continually calibrate the model to each new input on the fly. Our approach, which, to our knowledge, is the first to unify domain-tuned self-supervision with test-time training in large-scale EEG foundation models, yields substantially improved robustness and accuracy across diverse BCI tasks (imagined speech, stress detection, motor imagery). Using CBraMod and LaBraM as backbones, our method pushes their performance to a markedly higher level. Results on three diverse tasks demonstrate that the proposed alignment strategy achieves state-of-the-art performance, outperforming conventional fine-tuning and adaptation methods. Our code is available at https://github.com/wsl2000/NeuroTTT.
翻译:暂无翻译