The goal of the paper is to give fine-grained hardness results for the Subgraph Isomorphism (SI) problem for fixed size induced patterns $H$, based on the $k$-Clique hypothesis that the current best algorithms for Clique are optimal. Our first main result is that for any pattern graph $H$ that is a {\em core}, the SI problem for $H$ is at least as hard as $t$-Clique, where $t$ is the size of the largest clique minor of $H$. This improves (for cores) the previous known results [Dalirrooyfard-Vassilevska W. STOC'20] that the SI for $H$ is at least as hard as $k$-clique where $k$ is the size of the largest clique {\em subgraph} in $H$, or the chromatic number of $H$ (under the Hadwiger conjecture). For detecting \emph{any} graph pattern $H$, we further remove the dependency of the result of [Dalirrooyfard-Vassilevska W. STOC'20] on the Hadwiger conjecture at the cost of a sub-polynomial decrease in the lower bound. The result for cores allows us to prove that the SI problem for induced $k$-Path and $k$-Cycle is harder than previously known. Previously [Floderus et al. Theor. CS 2015] had shown that $k$-Path and $k$-Cycle are at least as hard to detect as a $\lfloor k/2\rfloor$-Clique. We show that they are in fact at least as hard as $3k/4-O(1)$-Clique, improving the conditional lower bound exponent by a factor of $3/2$. Finally, we provide a new conditional lower bound for detecting induced $4$-cycles: $n^{2-o(1)}$ time is necessary even in graphs with $n$ nodes and $O(n^{1.5})$ edges.
翻译:本文的目标是为固定规模驱动模式提供精确的硬度结果( $150美元) 基底值为$H美元。 基于美元- clique目前最佳算法是最佳的假设。 我们的第一个主要结果是, 对于任何模式图形 $H 美元, 美元与美元- clique, 基底值至少和美元( 美元- clique) 相同, 美元是最大的基底值, 基底值为$H美元。 基底值( 美元/ 美元) 。 基底值( 核心值) 改善( 基底值) $H$( Dalrooyfard- Vassilevska W. STOC'20 ), 基底值为美元- 基底值( 基底值) 基底值( 基底值) 基底值( 基底值为美元- 基底值) 基底值( 基底值) 基底值( 基底值为美元- 基底值( 基底值) 基底值( 基底值) 基底值( 基值) 基底值( 基值) 基底值) 基底值( 基底值) 基底值( 基底值) 基底值( 基底值) 基底值( 基底) 基底) 基值( 基底) 基底) 基值( 基值( 基底) 基值( 基值) 基值) 基值( 基值( 基值) 基值( 基) 基) 基值( 基底) 基值( 基) 基值( 基) 基) 基值( ) ) ) 基) ) 基) 基) 基) 基值( 基值( 基值) 基值) 基值(基值) 基值(基值( 基值) 基) 基) 基) 基) 基值(基值) 基值(基值) 基值(基) 基值(基值(基) 基值(基) 基值(基) 基