Electroencephalogram (EEG) artifact detection in real-world settings faces significant challenges such as computational inefficiency in multi-channel methods, poor robustness to simultaneous noise, and trade-offs between accuracy and complexity in deep learning models. We propose a hybrid spectral-temporal framework for real-time detection and classification of ocular (EOG), muscular (EMG), and white noise artifacts in single-channel EEG. This method, in contrast to other approaches, combines time-domain low-pass filtering (targeting low-frequency EOG) and frequency-domain power spectral density (PSD) analysis (capturing broad-spectrum EMG), followed by PCA-optimized feature fusion to minimize redundancy while preserving discriminative information. This feature engineering strategy allows a lightweight multi-layer perceptron (MLP) architecture to outperform advanced CNNs and RNNs by achieving 99% accuracy at low SNRs (SNR -7) dB and >90% accuracy in moderate noise (SNR 4 dB). Additionally, this framework addresses the unexplored problem of simultaneous multi-source contamination(EMG+EOG+white noise), where it maintains 96% classification accuracy despite overlapping artifacts. With 30-second training times (97% faster than CNNs) and robust performance across SNR levels, this framework bridges the gap between clinical applicability and computational efficiency, which enables real-time use in wearable brain-computer interfaces. This work also challenges the ubiquitous dependence on model depth for EEG artifact detection by demonstrating that domain-informed feature fusion surpasses complex architecture in noisy scenarios.
翻译:暂无翻译